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This paper addresses the parameter identification of friction-type hysteretic
isolators based on the versatile Bouc–Wen differential model. A frequency domain
method is developed to identify the model parameters from the experimental data
of periodic vibration tests. All the five parameters in the hysteretic model are
obtained by a one-stage parameter estimate scheme. Numerical simulations show
that the proposed method is insensitive to the noise in the observation signals. This
method is then implemented to model and identify the experimental hysteresis
loops of wire–cable vibration isolators, and the accuracy of the parameter
identification is verified by comparing the measured and identified harmonic
components of the hysteretic restoring force.
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1. INTRODUCTION

The non-linear hysteretic isolators with friction damping performance have
application in many areas [1–5]. They are capable of both attenuating heavy shock
and absorbing broad band vibration. Of particular importance for vibration
control at resonance is their slippage and flexure hysteresis. The non-linear
restoring force of hysteretic isolators is history-dependent, i.e., it depends not only
on the instantaneous deformation but also on the past history of deformation. As
a result, the hysteretic restoring force cannot be expressed by an algebraic function
of the instantaneous displacement and velocity. This memory nature renders the
hysteretic systems more difficult to model and analyze than other non-linear
systems.

The Bouc–Wen model [6, 7] has been widely used to describe non-linear
hysteretic systems including hysteretic isolators [8–11]. This non-linear differential
equation model reflects local history dependence through introducing an extra
state variable. Through appropriate choices of parameters in the model, it can
represent a wide variety of softening or hardening, smoothly varying or nearly
bilinear hysteretic behavior. This model has also been generalized to include
hysteresis pinching and stiffness/strength degradation. As a versatile model, it is
often possible to obtain a satisfactory representation of actual, measured hysteresis
loops when the model parameters are properly selected. Once one set of

0022–460X/98/440737+20 $30.00/0 7 1998 Academic Press



. .   .738

parameters are determined by identification from experimental data, this model
can automatically describe all hysteresis loops with different excitation/response
amplitudes from the experimental values.

In the past decade, efforts have been devoted to developing the identification
procedures for non-linear hysteretic systems. Most of them were presented by
referring to the Bouc–Wen model due to its significant advantage. These
procedures include the time-domain least-squares method [12, 13], the time
domain extended Kalman filtering technique [14, 15], and sequential or adaptive
method [16, 17]. A frequency domain Kalman filtering algorithm using
response statistics has also been proposed for the identification of hysteretic
systems under random excitation [18]. Two kinds of treatment were alternatively
adopted in these identification procedures. For the first kind of treatment,
the exponential parameter in the Bouc–Wen model is taken as a known constant
and only other model parameters need to be identified [13–15, 17, 18].
Such treatment may result in a linear estimate scheme or avoid the divergency
of non-linear iterative algorithms. However, a priori assumption of the
exponential parameter will certainly reduce, more or less, the identification
accuracy. The second kind of treatment is the introduction of a two-stage
estimate scheme [12, 16]. In the first stage, one or two parameters are fixed to
the assumed values and the remaining parameters are estimated. The second
stage takes the final estimate of the first stage as an initial estimate and carries
out the identification referring to all the model parameters. Recently, a
three-stage estimate scheme was proposed [19] wherein different estimate
techniques are used in the three stages. The multi-stage estimate approach is
usually time consuming although it can ameliorate identification accuracy as well
as convergency.

Wire–cable (rope) isolators are typical non-linear hysteretic damping devices.
They adopt stranded wire rope as the elastic component and utilize inherent
friction damping between the strands of the wire rope. Wire–cable isolators have
found numerous applications in the shock and vibration isolation of industrial and
defense equipment, electronic systems, critical machinery and other sensitive
equipment [1, 20, 21]. Recently, the usefulness of these isolators for the seismic
protection of equipment in buildings was investigated [11]. The potentially greater
use of wire–cable isolators requires a full understanding of their damping
characteristics. Only little theoretical work has been done on the analytical
modelling of wire–cable isolators. Cutchins et al. [1] proposed two Coulomb
damper models in an effort to model the hysteretic damping of a wire rope
isolation system. Subsequently, an amended model incorporating nth power
velocity damping and non-linear stiffness was suggested to get a better match with
experimental data [21]. With this model, the experimental hysteresis loops with
different amplitudes cannot be represented by using a same set of model
parameters. This model may also give an unreasonable indication of dynamic
characteristics in some situations [22]. Ko et al. [23] proposed a semi-empirical
model for representing a set of experimental hysteresis loops of a wire-cable
isolator. Lo et al. [9] were among the first to model wire–cable isolators using the
Bouc–Wen model. Demetriades et al. [11] adopted an amended Bouc–Wen model
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to obtain analytical descriptions for the experimental hysteresis loops of
wire–cable isolators.

The intent of this paper is to develop a frequency domain parametric
idenification method for the modelling of non-linear hysteretic isolators from
periodic vibration experimental data. The periodic vibration tests on non-linear
hysteretic isolators are usually feasible in laboratory. The Bouc–Wen model is
adopted to represent the hysteretic damping characteristics, and all the five
parameters in the model are determined by identification from a one-stage estimate
scheme. The proposed method is then applied to the modelling of wire–cable
isolators from experimental data.

2. HYSTERETIC MODEL

2.1. –  

By using the Bouc–Wen model, the restoring force–displacement relation of a
hysteretic isolator can be expressed in terms of the following non-linear differential
equation [7]

r(t)= mKx(t)+ (1− m)Kz̄(t), z� (t)= āẋ(t)− b�=ẋ(t)=z̄(t)=z̄(t)=n−1 − ḡẋ(t)=z̄(t)=n.
(1a, b)

A detailed explanation of the physical meaning of the model parameters is
available [24]. By means of the transformation

z=(1− m)Kz̄, b= mK, a= ā(1− m)K,

b= b�[(1− m)K]1− n, g= ḡ[(1− m)K]1− n, (2)

equation (1) can be rewritten as

r(t)= bx(t)+ z(t), ż(t)= aẋ(t)− b=ẋ(t)=z(t)=z(t)=n−1 − gẋ(t)=z(t)=n (3a, b)

where r(t) and x(t) represent the restoring force and displacement. z(t) is a
hysteretic auxiliary variable. The overdot denotes the differentiation with respect
to time t. b, a, b, g and n are model parameters to be determined. Through the
transformation, the number of model parameters is reduced from six in equation
(1) to five in equation (3).

2.2.   

The response behavior of the Bouc–Wen hysteretic oscillator was investigated
by the present authors [25]. Recently, the hysteresis loop characteristics of the
Bouc–Wen model were further studied [26]. Based on this work, some conclusions
concerning the suitability and limitation of the Bouc–Wen model to the
representation of actual, observed hysteresis loops are summarized as follows.
(a) Although z(t) versus x(t) already represents a hysteretic constitutive relation,
the linear term bx(t) in equation (3a) is necessary for expressing actual hysteresis
loops of isolators. If excluding the linear term bx(t), it follows that r(t)= z(t) and

1r/1x= a−[g+ b sgn (ẋ) sgn (r)]=r=n (4)



. .   .740

In this instance, 1r/1x varies only with r except relating to the sign of ẋ, regardless
of x. When r=0, 1r/1x is also equal to the constant a. This means that the
hysteresis loops corresponding to different excitation and response levels would
have the same slope at those points with same values of r and identical sgn (ẋ),
which conflicts with the observed hysteresis loops of the actual isolators [9, 23].
This inconsistency can be obviated through including a non-hysteretic linear term
bx(t) (even non-linear term if needed) in the restoring force expression. When the
linear term is considered, one has

1r/1x= b+ 1z/1x=z= r− bx = b+ a−[g+ b sgn (ẋ) sgn (r− bx)]=r− bx=n, (5)

which is a function of both r and x.
(b) The Bouc–Wen model is rate-independent. In mathematics, hysteresis is

directly defined as a rate independent memory effect [27]. In reality, memory effects
may not be purely rate-independent as hysteresis is coupled with the viscosity-type
memory. However, the hysteresis effect is usually dominant when the time
evolution is not too fast. The rate-independent feature of hysteresis is consistent
with the experimental findings of the friction-type hysteretic damping devices.
Dynamic tests showed that the hysteresis loops of wire–cable isolators are almost
independent of vibration frequency in the tested frequency range [11, 23].

(c) The Bouc–Wen model is capable of representing normal softening, hardening
or quasi-linear hysteresis loops, but fails to describe more complicated hysteresis
behaviors. Some isolators may exhibit unsymmetric hysteresis loops under
symmetric excitation. The Bouc–Wen model cannot represent such unsymmetric
hysteresis. This model is also incapable of describing the so-called soft–hardening
hysteresis loops and the hardening hysteresis loops with overlapping loading
envelope. Some modification to the Bouc–Wen model has been made to
accommodate the actual, complicated hysteresis behaviors [26].

(d) In some special cases, different combinations of some parameters in the
Bouc–Wen model may produce almost identical hysteresis loops. When the
Bouc–Wen model is used to represent softening hysteresis loops, the extreme value
of the hysteretic auxiliary variable z(t) can be obtained as

zm =[a/(b+ g)]1/n. (6)

With the value of zm unvaried, different combinations of the parameters b and g

can give rise to similar hysteresis loops. Figure 1 illustrates two groups of hysteresis
loops, one with b= g=0·5 and the other with b=0·8 and g=0·2. They are
almost identical. This is also the reason why the identification results of some
simulation examples are distinct from the true values [15, 19]. However, these
deviated estimate values of the model parameters still produce almost the same
hysteresis loops as the true hysteresis loops. In this sense, these estimate values are
still reasonable identification results. This is especially true for the identification
of actual isolators because one just needs an accurate modelling of experimental
hysteresis loops. One can also deal with this nearly redundant parameter
pheonomenon in identification process. For instance, the estimate can be carried
out by imposing the constraint bq g, b= g and bQ g respectively. When the
system is a priori known to display softening hysteresis loops, an altered version
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Figure 1. Comparison of hysteresis loops with different combinations of b and g: (a) displacement
controlled hysteresis loops (b=0·1, a=1·0, n=1·5); (b) force controlled hysteresis loops
(b=0·1, a=1·0, n=1·5). Left figures b= g=0·5; right figures b=0·8, g=0·2.

of the Bouc–Wen model omitting the parameter g may be adopted for
identification. With the parameter g omitted, the Bouc–Wen model reduces to
Ozdemir’s model [28]. The latter has also been used to model non-linear damping
devices with softening hysteretic behavior [29, 30].

3. IDENTIFICATION METHOD

3.1.   

Consider a hysteretic system for which the equation of motion is expressed as

mẍ(t)+ r(t)=F(t), (7)

where x(t) represents the displacement response of a SDOF system or the
generalized modal displacement of a MDOF system [31]. F(t) and r(t) are
the (generalized modal) external excitation and hysteretic restoring force
respectively. The mass m is assumed to be known. The hysteretic restoring force
governed by equation (3) is identified by taking measurements of both the external
excitation F(t) and the displacement response x(t) (or the acceleration ẍ(t)
alternatively). The vector of model parameters to be identified is
{y}= {b a b g n}T.



. .   .742

For periodic vibration tests, the measured time signals of F(t) and x(t) are
periodic and can be expressed as

F(t)=
Fo

2
+ s

N

j=1

Fj cos jvt+ s
N

j=1

F*j sin jvt,

x(t)=
ao

2
+ s

N

j=1

aj cos jvt+ s
N

j=1

a*j sin jvt, (8, 9)

where

{F}= {F0 F1 F2 · · · FN F*1 F*2 · · · F*N }T

and

{a}= {a0 a1 a2 · · · aN a*1 a*2 · · · a*N }T

are the harmonic component vectors of F(t) and x(t) and v is the vibration
frequency. N is the order number of harmonics truncated. Usually, the excitation
and response signals are recorded as digital data sampled at discrete time intervals.
When the digital acquisition satisfies some specific conditions [23], the undistorted
values of harmonic components of a periodic signal can be readily obtained by
fast Fourier transform (FFT) to the sampled data. A numerical re-sampling
process [26] can be used before FFT to insure that the sampled data completely
meet such conditions. The model parameters {y} are now identified according to
the known harmonic component vectors {F}, {a} of the measured excitation and
response periodic signals.

Introducing equation (3) into equation (7) yields

F� −mx� = ẋ{b+ a−[b sgn (ẋ) sgn (F− bx−mẍ)+ g]=F− bx−mẍ=n}. (10)

The time domain determining function is therefore defined as

D(t)=F� −mx� − ẋ{b+ a−[b sgn (ẋ) sgn (F− bx−mẍ)+ g]=F− bx−mẍ=n}.
(11)

If the actual force–displacement relation conforms completely to the Bouc–Wen
model and {y} is true model parameters, applying the Galerkin (harmonic balance)
method into equation (11) achieves

d(y)= 0, (12)

where {d}= {d(y)}= {d0 d1 d2 · · · dN d*1 d*2 · · · d*N }T is the harmonic component
vector of D(t) corresponding to the model parameters {y}. For the identification
problem, the determining function is usually impossible to approach zero due to
model error and measurement noise. In this situation, {d} is interpreted as the
residual of the equations and a minimization problem in terms of non-linear least
squares arises as

min g(y)= >d(y)>2 = dTd. (13)
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This non-linear least squares optimal problem is solved iteratively by the
Levenberg–Marquardt (LM) algorithm. The iteration formula of the LM
algorithm is

y(k+1) = y(k) − {J[y(k)]T · J[y(k)]+8k I}−1 · J[y(k)]T · d[y(k)], (14)

where J[y(k)]= 1d(y)/1y=y= y(k) is the Jacobian matrix, 8k is the Levenberg–
Marquardt parameter, I is the identity matrix.

At each iteration step, the function vector d[y(k)] and Jacobian matrix J[y(k)]
should be recalculated with updated values of y(k). Here, a frequency/time domain
alternating scheme by FFT is introduced to evaluate the values of d[y(k)] and J[y(k)].
d(y) and 1d(y)/1y are known to be the harmonic components of D(t) and 1D(t)/1y
respectively. The time domain discrete values of F(t), F� (t), x(t), ẋ(t), ẍ(t) and x� (t)
over an integral period are first obtained by inverse FFT to {F} and {a}. Then
the time domain discrete values of D(t), corresponding to y= y(k), are computed
by equation (11). By forward FFT to these time domain discrete values of D(t),
the values of d[y(k)] are obtained. Similarly, the values of J[y(k)] are evaluated by
forward FFT to the time domain discrete values of 1D(t)/1y at y= y(k). 1D(t)/1y
can be derived analytically as follows

1D(t)/1y1 = 1D(t)/1b=−ẋ− xẋ=z=n[(n+1)b sgn (ẋ)+ ng sgn (z)] 1 sgn (z)/1z

−nxẋ=z=n−1[b sgn (ẋ)+ g sgn (z)], z=F− bx−mẍ, (15a)

1D(t)/1y2 = 1D(t)/1a=−ẋ, 1D(t)/1y3 = 1D(t)/1b= ẋ sgn (ẋ) sgn (z)=z=n,
(15b, c)

1D(t)/1y4 = 1D(t)/1g= ẋ=z=n,

1D(t)/1y5 = 1D(t)/1n= ẋ[b sgn (ẋ) sgn (z)+ g]=z=n ln =z=, (15d, e)

where the derivative of the signum function sgn (z) is equal to twice the Dirac delta
function d(z). d(z) is a generalized function which does not have specific functional
values in common sense, and hence intractable to numerical computation. A
common treatment is to replace the signum function with a continuous function.
In the present study, the signum function is approximated by

sgn (z)3S(z)= 8 +1,
(2− =z=/v)z/v,

−1,

zq v
−vE zE v

zQ−v 9, (16)

and its derivative

1 sgn (z)
1z

3S'(z)= 8 0,
(2/v)(1− =z=/v),

0,

zq v
−vE zE v

zQ−v 9, (17)

where the regularization parameter v is a small positive real number. The use of
this function is due to two virtues: S(z) is exactly equal to sgn (z) for =x=qv; S'(z)
is a continuous function like S(z).
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Usually, the periodic vibration tests are carried out under a wide range of
frequencies and amplitudes. As a result, certain groups of the excitation and
response signals Fj (t), xj (t) ( j=1, 2, . . . , M) with different frequencies and
amplitudes are measured and are used for parameter identification. In this
situation, the objective function for least squares is

min g(y)= s
M

j=1

wj>dj (y)>2 = s
M

j=1

wjdT
j dj , (18)

where wj is a weight factor. Only the number of iterated equations is extended from
(2N+1) to (2N+1)M and the solution process is similar.

3.2.  

A series of numerical simulations [26] have been performed to verify the validity
of the proposed identification method. Four aspects have been addressed in these
examples: (a) The applicability of the proposed method to various hysteretic
systems including softening, hardening as well as quasi-linear systems; (b) The
effect of different levels and types of the corrupted noise on the identification
accuracy. The noise is simulated by the uniformly distributed random variables
and by the normally distributed random variables; (c) Comparison of
identification results from the observed signals with different frequencies. Albeit
the hysteretic restoring force is rate-independent, the inertial force arising from
different frequencies still affects the identification results; (d) Comparison of
identification accuracy from the force controlled tests and from the displacement
controlled tests.

Presented here is a special example with the aim of showing the nearly redundant
parameter phenomenon. Emphasis is laid on observing the influence of noise level
on the identification accuracy while the frequency effect is excluded by considering
quasi-static excitations. Two sets of model parameters are considered, set 1 with
b=0·1, a=1·0, b=0·5, g=0·5, n=1·5 and set 2 with identical values except
b=0·8, g=0·2. Both sets of the parameters correspond to softening hysteretic
systems with the same extreme value zm =1. The output data of force controlled
tests are simulated by calculating three groups of steady state displacement
responses xj (t) ( j=1, 2, 3) under force periodic exctitation Fj (t)=Fj cos t
(F1 =1·0, F2 =2·0, F3 =3·0). Similarly, the resulting periodic forces Fj (t)
( j=1, 2, 3) corresponding to the prescribed displacement sequences
xj (t)=Aj cos t (A1 =2·0, A2 =4·0, A3 =6·0) are simulated as the output data of
displacement controlled tests. The true hysteresis loops under these conditions are
illustrated in Figure 1.

The force controlled and displacement controlled numerical experiments of the
system with the parameters of set 1 are first performed. Only the output
observation signals are contaminated with noise. The discrete noise corrupted
output signals for the force controlled tests are obtained by

x̄j (ti )= xj (ti )+ eriXj (19)
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T 1

Identification results of set 1 from force controlled tests

e (using 1-period signals) e (using 8-period signals)
Model Noise ZXXXXXCXXXXXV ZXXXXXCXXXXXV

parameters free 0·01 0·05 0·10 0·01 0·05 0·10

b 0·1000 0·1000 0·0993 0·0975 0·1000 0·0999 0·0998
a 1·0000 1·0237 1·0835 2·1310 0·9924 0·9618 0·9225
b 0·5000 0·3944 0·1960 0·1195 0·4956 0·4687 0·3936
g 0·5000 0·6322 0·8928 2·0122 0·4975 0·4962 0·5341
n 1·5000 1·3736 0·7011 0·1477 1·4723 1·3508 1·2081

where r'i ’s are a sequence of normally distributed random variables with zero mean
and unit variance, Xj is the amplitude of xj (t) and the parameter e represents the
noise level. For the displacement controlled tests, the noise corrupted output data
are given by

F�j (ti )=Fj (ti )+ eriFj , (20)

where Fj is the amplitude of Fj (t).
Table 1 and Table 2 show the identification results of model parameters under

various noise levels. No constraint or hypothesis on the model parameters is
introduced in the estimate process. The weight wj is taken as unity. Different
lengths of discrete signals are used for identification. In the noise free case, the
exact values of the parameters can be identified even using 1-period signals. The
accuracy of identification is reduced with the increase of the level of corrupted
noise. In the presence of serious noise, the identification results from 1-period
signals may be very poor. However, increasing the length of signals used for
identification would significantly improve the identification accuracy. Satisfactory
identification results are obtained when using a certain number of periods of the
signals. In actual experiments, usually the discrete time domain signals with
enough length are recorded and are used for identification.

A comparison between Table 1 and Table 2 indicates that better identification
results can be obtained from the displacement controlled tests than from the force

T 2

Identification results of set 1 from displacement controlled tests

e (using 1-period signals) e (using 8-period signals)
Model Noise ZXXXXXCXXXXXV ZXXXXXCXXXXXV

parameters free 0·01 0·05 0·10 0·01 0·05 0·10

b 0·1000 0·0999 0·0989 0·0966 0·1000 0·1002 0·1003
a 1·0000 0·9925 0·9717 0·9558 0·9987 0·9934 0·9871
b 0·5000 0·5148 0·5672 0·6180 0·5015 0·5074 0·5142
g 0·5000 0·4743 0·3852 0·2969 0·4963 0·4817 0·4641
n 1·5000 1·5166 1·5215 1·4410 1·5010 1·5040 1·5060
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Figure 2. Identified hysteresis loops of set 1 from noise corrupted data (e=0·10): (a) force
controlled tests; (b) displacement controlled tests.

controlled tests. Considering the rate-independent nature of the hysteretic
restoring force, the displacement controlled cyclic loading tests can be readily
executed using hydraulic actuators. Observation is now made on the identification
results using 8-period signals. When the signals are noise corrupted corresponding
to e=0·10, the identification results from the displacement controlled tests are
only slightly different from the true values, and those from the force controlled
tests, although possessing relatively large discrepancies, are still acceptable.
Figure 2 depicts the theoretical hysteresis loops produced using the identified
model parameters under e=0·10. They are excellently agreeable to the true
hysteresis loops illustrated in Figure 1.

Numerical experiments are then implemented to the system with the parameters
of set 2. The noise is now contaminated in a different manner. The discrete noise
corrupted output data for the force controlled tests and for the displacement
controlled tests are simulated respectively as

x̄j (ti )= (1+ eri )xj (ti ), F�j (ti )= (1+ eri )Fj (ti ), (21, 22)

where ri’s are a sequence of random variables with uniform distribution within the
interval (−1, 1). The parameter e represents the ratio of noise to signal.

Table 3 and Table 4 list the identification results of the model parameters under
various noise levels and using different lengths of data. Exactly accurate values of
the parameters are identified from noise free data. The observation signals with

T 3

Identification results of set 2 from force controlled tests

e (using 1-period signals) e (using 8-period signals)
Model Noise ZXXXXXCXXXXXV ZXXXXXCXXXXXV

parameters free 0·01 0·05 0·10 0·01 0·05 0·10

b 0·1000 0·1000 0·0998 0·0996 0·1000 0·1000 0·0999
a 1·0000 1·0141 1·1973 1·2889 1·0088 1·0588 1·1551
b 0·8000 0·7942 0·3764 0·1685 0·7914 0·7217 0·5718
g 0·2000 0·2199 0·8208 1·1211 0·2175 0·3369 0·5829
n 1·5000 1·4579 1·1257 1·0386 1·4804 1·3654 1·1902
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T 4

Identification results of set 2 from displacement controlled tests

e (using 1-period signals) e (using 8-period signals)
Model Noise ZXXXXXCXXXXXV ZXXXXXCXXXXXV

parameters free 0·01 0·05 0·10 0·01 0·05 0·10

b 0·1000 0·1001 0·1006 0·1011 0·1000 0·1002 0·1004
a 1·0000 0·9965 0·9832 0·9679 0·9989 0·9947 0·9896
b 0·8000 0·8106 0·8538 0·9093 0·8024 0·8121 0·8244
g 0·2000 0·1855 0·1273 0·0544 0·1964 0·1819 0·1638
n 1·5000 1·5086 1·5415 1·5791 1·5028 1·5138 1·5269

enough length are most desirable to achieve satisfactory identification results. It
appears again that the identification results from the displacement controlled tests
are evidently better than those from the force controlled tests.

For the displacement controlled tests, so long as a certain number of periods
of signals are used, satisfactory identification results are always obtained even the
signals are seriously noise corrupted. For the force controlled tests, however, the
estimated values of the parameters b and g deviate gradually from the true values
with the increase of noise level. It is interesting to note the identification results
with e=0·10 close to set 1 rather than to set 2. They still yield the extreme value
zm equal almost to 1·0. Figure 3 shows the corresponding theoretical hysteresis
loops generated using the identified model parameters under e=0·10. Although
the identified values of the parameters b and g are completely distinct from the
true values, the identified hysteresis loops coincide well with the true loops. In this
sense, such estimated values of the model parameters are still acceptable
identification results.

As shown in Figure 1, the model parameters of set 1 and set 2 produce almost
identical hysteresis loops. In fact different combinations of b and g mainly affect
the paths of inner branches (minor loops). The two cases exhibit almost the same
responses for a wide range of cyclical loading amplitudes. A further comparison
of the response harmonic components between the two cases shows that [26],
under displacement loading the harmonic components of force response for set 1

Figure 3. Identified hysteresis loops of set 2 from noise corrupted data (e=0·10): (a) force
controlled tests; (b) displacement controlled tests.
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Figure 4. Sensitivity of objective function with respect to model parameters: (a) sensitivity curves
of formula 1; (b) sensitivity curves of formula 2.

are slightly different from the corresponding values for set 2. Under force loading,
however, the harmonic components of displacement response are almost same for
the two cases. This explains why the identification results from force controlled
tests are poorer than those from displacement controlled tests. It is also expected
that the accuracy of parameter identification can be improved if the observation
data embrace more information of intermediate minor loops through
multi-harmonic excitation.

3.3.  

Sensitivity analysis of the objective function g(y) with respect to the identified
parameters {y} is helpful for determining initial guesses and understanding
convergency performance of iteration. The sensitivity function can be derived from
equation (18) as

1g(y)
1y

=2 s
M

j=1

wjdT
j
1dj

1y
, (23)

where dj and 1dj /1y are the function vector and Jacobian matrix. They can be
readily evaluated by the frequency/time domain alternating algorithm.

The estimate scheme can be constructed with different objective function
sensitivities. For instance, equation (1) can be transformed as the following
expression

r(t)= bx(t)+ az1(t), ż1(t)= ẋ(t)− b1=ẋ(t)=z1(t)=z1(t)=n−1 − g1ẋ(t)=z1(t)=n

(24a, b)

by letting

z1 = z/a= z̄/ā, b1 = ban−1 = b�ān−1, g1 = gan−1 = ḡān−1, (25)

The model parameters relevant to equation (24) are also five, i.e.,
{y}= {b a b1 g1 n}T. However, the objective function sensitivity of an estimate
scheme based on equation (24) will be different. Figure 4 presents the objective
function sensitivity curves of a softening system observed under noise
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contamination. Here formula 1 refers to the estimate scheme based on equation
(3) with the identified parameters {y}= {b a b g n}T, while formula 2 is based
on equation (24) with {y}= {b a b1 g1 n}T. When evaluating the sensitivity with
respect to a specific parameter, the other parameters are constantly fixed to their
true values. It is seen in Figure 4, the sensitivity curves except that with respect
to the parameter n are all monotone increasing functions. The sensitivity curve
1g/1n versus n is not monotonic, which first increases and then decreases to
approach zero with the increase of n. An inappropriate initial guess of n may lead
to convergence difficulty or incorrect solution. This also explains why most
estimate methods do not include n as a parameter to be identified.

4. IMPLEMENTATION TO WIRE–CABLE ISOLATORS

A comprehensive experimental study on the static and dynamic hysteretic
behavior of wire–cable isolators has been carried out [32]. Figure 5 shows the
schematic of tested wire–cable isolators. A hanging shaking platform, as shown
in Figure 6, has been developed for experiments on wire–cable isolators. In this
setup, two rigid plates are hung in parallel upon a trestle, through nearly
frictionless hinges connected with four rigid steel tubes, to form a double
pendulum system. The isolator is mounted and fixed with its aluminum retainer
bars to the upper and lower plates. The upper plate on the top of the isolator is
fixed horizontally to the trestle through a force transducer (load cell) that measures
the restoring force. The lower plate under the isolator is excited on one end, and
connected on the other to an LVDT transducer to monitor isolator displacement.
Excitation signals are supplied by a sine random generator which harmonically
drives the lower plate. Besides the LVDT displacement transducer, an
accelerometer is also mounted at the lower plate to measure acceleration and the
signal is integrated digitally to obtain the displacement which can be used for
comparison with the signal of the LVDT. The restoring force, displacement and
acceleration are measured via charge amplifier, low pass filter and digitized
through an A/D converter to a personal computer.

The hysteretic behavior of friction-type isolators is affected by static preloading.
Hence the shaking platform is designed as a hanging double pendulum to
eliminate vertical preloading owing to the upper plate weight. Also, the pendulum
length is designed to be long enough relative to the motion of the isolators.
Relative movement between the two plates can provide an almost pure shear
deformation in the isolator. An advantage of this setup is that it allows direct

Figure 5. Schematic of tested wire–cable isolators.
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Figure 6. Setup of hanging shaking platform.

measurements of the restoring force (not exciting force) and response
(displacement and acceleration) signals. The rate-independent nature of wire–cable
isolators in the low frequency range has been experimentally verified as shown in
Figure 7.

One of the wire–cable isolators, with length L=112 mm, width b=40 mm and
height h=32 mm, is tested in shear direction by imposing periodic sinusoidal
motion of specified vibration amplitudes and frequencies. The displacement and
restoring force periodic signals are generated for the frequency range 5–50 Hz, and
for different amplitudes at each specific frequency. Figure 8 shows the measured
hysteresis loops, after low pass filtering, with different vibration amplitudes at the
frequency f=5 Hz and f=10 Hz respectively. The displacement and restoring
force signals are recorded simultaneously and are sampled synchronously by using
a high speed data acquisition processor. Non-synchronism of the displacement and
restoring force signals during recording and sampling will seriously distort the
shape and area of hysteresis loops.
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Figure 7. Experimental hysteresis loops with different frequencies.

A total of 20 groups of recorded displacement and restoring force signals with
different frequencies and amplitudes are used for identification, i.e., M=20. The
order number of harmonics truncated is taken as N=5. The parameter
identification is performed by taking the weight factor wj equal to 1, A−1/2

j and A−1
j

respectively, where Aj is the amplitude of the jth displacement signal xj (t). Four sets
of initial guesses,

{y(0)}= {0·1 0·1 0·1 0·1 1·0}T, {y(0)}= {1·0 1·0 1·0 1·0 1·0}T,

{y(0)}= {5·0 5·0 5·0 5·0 1·0}T, {y(0)}= {10·0 10·0 10·0 10·0 1·0}T

are tried to carry out the iterative solution using formula 1 and to check the
uniqueness of convergency. The convergency takes place for all these initial
guesses. With a specific weight factor, the iteration starting from different initial
guesses approaches the same set of converged values. Table 5 lists the identification
results. The parameter estimation is also performed using formula 2 and identical
values are obtained.

By using the identified values of the model parameters, the Bouc–Wen model
generates the theoretical hysteresis loops as shown in Figure 9. It is seen that the
Bouc–Wen model with the identified parameters provides a good representation
of the measured hysteresis loops. Though the values of the model parameters

Figure 8. Measured hysteresis loops with different amplitudes after low pass filtering: (a) hysteresis
loops at f=5 Hz; (b) hysteresis loops at f=10 Hz.
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T 5

Identification results of a wire–cable isolator

Model parameters wj =1 wj =A−1/2
j wj =A−1

j

b 6·078 6·674 7·423
a 34·422 38·017 40·334
b 8·940 8·780 8·207
g 1·500 1·423 0·503
n 0·525 0·594 0·710

obtained by using different weight factors are different, the resulting hysteresis
loops appear similar. It has been shown [25] that a slight variation of the model
parameter n will require a significant change in other parameters in order to fit
the same hysteresis loops. The exponential parameter n governs the transition
smoothness of the hysteresis loops. If n is invariant, the identified model
parameters by using different weight factors will be more consistent.

Since the isolator, when under test, vibrates with nearly single harmonic motion,
the theoretical hysteresis loops are produced under the displacement loading
x(t)=Aj cos t. It has been shown [23, 25] that the hysteresis loop characteristics
of an isolator under sinusoidal motion are completely described by the harmonic
components of its restoring force. The restoring force harmonic components of
the Bouc–Wen hysteretic system subjected to a periodic displacement loading can
be readily evaluated by means of a steady state response analysis [24]. Therefore,

Figure 9. Theoretical hysteresis loops produced by identified model parameters: (a) weight factor
wj =1; (b) weight factor wj =A−1/2

j ; (c) weight factor wj =A−1
j .
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Figure 10. First order harmonic components of restoring force: (a) weight factor wj =1; (b) weight
factor wj =A−1/2

j ; (c) weight factor wj =A−1
j . Key: ––, identified; Q, +, measured.

a comparison between the measured and identified harmonic components will
verify the accuracy of parameter identification.

Figure 10 illustrates such a comparison, in which the solid lines indicate the
calculated (identified) first order harmonic components of the restoring force of
the identified model subjected to displacement loading x(t)=A cos t, while the
scattered points denote the measured values. It is observed that when wj =1,
because those of the measured displacement force signals with large amplitudes
play a predominant role in identification, some discrepancy between the measured
and identified harmonic components is present in the small amplitude range. When
wj =A−1

j , the discrepancy in the small amplitude range is eliminated but the error
in the large amplitude range increases relatively. In the case of wj =A−1/2

j , a
compromise situation is achieved. Apparently, the identification accuracy can be
ameliorated by introducing proper weight factors.

5. CONCLUSIONS

An identification method has been proposed to estimate the model parameters
of the Bouc–Wen hysteretic systems from periodic vibration tests. Applying the
harmonic balance technique leads to a frequency domain least squares estimate
with appropriate cost function. The LM iteration algorithm is formulated for the
parameter estimation, in which a frequency/time domain alternating scheme by
FFT is introduced to perform the numerical calculation concerned. The
conventional time domain estimate methods [12, 16] used to solve the same
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problem require a numerical solution of about 20 simultaneous non-linear
differential equations at each iterative step, hence involving a great amount of
computational effort. The frequency/time domain alternating scheme present here
is computationally efficient.

Numerical simulations show that the proposed frequency domain method is
insensitive to the corrupted noise. Usually, when the signal-to-noise ratio is greater
than twenty (eE 0·05) and the experimental data used for identification are long
enough, all the model parameters can be estimated reliably. When the signal is
contaminated with serious noise, some of the identified parameters may deviate
from their true values. However, the theoretical hysteresis loops produced using
such estimated values still coincide well with the true loops. In this sense, the
identification results are considered to be reasonable. With the same level of noise,
the identification results from displacement controlled experiments are more
accurate than those from force controlled experiments.

The proposed method has been applied to the modelling and identification of
the experimental hysteretic behavior of a wire–cable isolator. A good
representation of the measured hysteresis loops is obtained from the identification
results. The case study shows that the identification accuracy is ameliorated by
introducing proper weight factors. The weight factors can be taken to be inversely
proportional to the amplitudes (or their roots) of measured displacement or force
periodic signals.
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